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A Manganese Phthalocyanine-Dioxygen Molecular 
Adduct 

Sir: 

In 1959, Elvidge and Lever' reported the ability of man-
ganese(Il) phthalocyanine (1) to bind molecular oxygen in 
pyridine solution, finally to yield2 /i-oxo-bis(pyridinemanga-
nese(III) phthalocyanine) (2) (L = pyridine) whose formation 
proceeds through an intermediate proposed1 to be an oxygen 
adduct. Calvin and co-workers3-4 subsequently proposed that 
the intermediate is (HO)Mn111Pc (3).5 Clarification of this 
system is of considerable importance because of relevance to 
the role played by manganese in photosynthesis6 and in certain 
dismutases.7 The adduct8 is now shown to be (C^)MnPc (4), 
as independently proposed by Uchida and co-workers,9 who. 
however, presented little supporting evidence. 

Oxygenation proceeds more readily in A'./V-dimethylacet-
amide (DMA) because of a weaker manganese solvent inter­
action. Reaction of oxygen with Mn11Pc (1) in spectroquality 
DMA affords the sparingly soluble adduct 4 which precipitates 
from solution.10 The infrared spectrum of 4 was recorded after 
preparation from both 16OT and 18Oi. Figure 1 illustrates the 
region near 11OO cm"' where an additional band at 1094 cm"' 
in the oxygen-18 spectrum appears to correspond with a pro­
nounced shoulder in the oxygen-16 spectrum at —1154 cm-1. 
These bands may be tentatively assigned as the i'(O-O) 

1175 1150 1125 1100 

stretching vibrations of a coordinated terminal superoxide 
ion." Bridging superoxides do not absorb in this region in the 
infrared.12 No absorption near 800-950 cm-1 attributable to 
coordinated peroxide could be identified in these spectra. 

The solid (4) is paramagnetic, the magnetic moment de­
clining from ~3.9 /UB at 300 K to ~2.6 ^B at 84 K. In frozen 
DMA solution the adduct 4 exhibits a complex X-band, 
~ 18-line, ESR spectrum13 distinct from that of the other 
species involved. The frozen solution Q-band spectrum shows 
two species, a free manganese impurity and the oxygen adduct. 
A seven-line multiplet may be shown to correspond exactly 
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Figure 1. The infrared spectra of (Uj)MnPc incorporating oxygen-16 and 
oxygen-18 in the region 1075-1 1 75 cm - 1 (Nujol mull). 

Figure 2. Solution spectra in DMA at ~5 X 1O-4 M concentration: (a) 
equilibrium conversion of PcMn(II) (X11111x 674) into PcMn(O2) under 
various oxygen pressure; (b) conversion of pure PcMn(O2) into (DMA)-
PcMn-O-MnPc(DMA) using imidazole ( -1O - 3 M) at / = 0 (- • -) . ' 
= 3 h (• • •), and t = 20 h (—) (the reaction had not gone to completion 
under these conditions); (c) conversion of (DMA)PcMn O MnPc(DMA) 
into PcMn(Oi) with oxvgen (1 atm) a u = 0 (—). t = 50 min (•••)./ = 
12 h C )-
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Scheme I" 

Et,NO ? L - M n ( I I ) P c (1 674 i n ) (. , 
3 71 2 max ' 

E t , N / v a c h y y o Et3N ( i n v a c u o ) 

( I m / v a c ) / / 

(0,)MnPc (X 708 nm) * H . I P r M n ( I I I ) - O - M n ( I I I ) P c ( I , ) (X 616 on! 

"L represents a solvent molecule, triethylamine or imidazole as 
appropriate. The absorption band maxima refer to pure DMA and 
may vary slightly in other solvents or when other ligands are present. 
The products in these reaction routes, initially identified through 
spectrophotometry, were confirmed by ESR and/or chemical re­
activity. 

(centered (g) value = 1.997, and |̂ 4 MnI = 95G) with a set of 
lines in the X-band spectrum, and provides evidence for a 
mononuclear manganese derivative.14 

The visible spectra of the three major species, 1, 2, and 4 
(Figure 2), vary only slightly with change of solvent or axial 
ligand and their solution chemistry is therefore most readily 
followed spectrophotometrically in ~5 X 1O-4 M solution. In 
this fashion the chemistry outlined in Scheme I was de­
duced. 

The oxygen adduct is extremely stable. Spectroscopic 
monitoring shows that a solution of Mn11Pc is converted es­
sentially quantitatively and in a matter of minutes into the 
adduct under a partial pressure of oxygen of a few Torr. A plot 
of log \{A — AQ)/(A„ — A)| vs. P(O2) monitoring the major 
peaks of 1 and 4 yielded a slope of unity indicating1 -̂  formation 
of the 1:1 complex (C^)MnPc in solution and yielding a value 
of P(O2) 1/2 ^ 0.2 Torr at 24 0C. The adduct solution is stable 
in vacuo at 50 0C for some hours, showing only very slow re­
versal. However dimethylamine, a contaminant of DMA must 
be absent. In the presence of species such as Me2NH, EtjN, 
and imidazole, in vacuo, the adduct is rapidly reconverted into 
Mn11Pc. The adduct in vacuo also reverses to 1 in sunlight or 
when flashed with visible light. A suspension of 4 in DMA 
exposed to sunlight for several hours in vacuo releases oxygen 
gas as detected by mass spectroscopy. Appropriate "blanks" 
using a suspension of 1 showed no oxygen release. However, 
when a suspension of 4 in vacuo was reconverted into 1 with 
imidazole or triethylamine, no oxygen gas could be detected 
by mass spectroscopy. This appears to be another example of 
oxidase activity16 for this species. The organic products have 
not yet been identified. 

Addition of imidazole to the adduct dissolved in aerated 
DMA generates the /u-oxo species 2(L = DMA) (Figure 2b). 
This reaction is regarded as a proton-activated decomposition 
of superoxide and may proceed through a dismutase-like 
pathway. Most significantly the /U-oxo species 2(L = DMA) 
may also be converted back into the adduct 4, under pressure 
of oxygen (slow, hours at 298 K) in the absence of protons 
(Figure 2c). Moreover, when the oxo species 2(L = DMA) is 
treated with triethylamine (but not imidazole) in vacuo, it is 
reconverted into 1. These reactions may be explicable in terms 
of a mechanism which is the reverse of the pathway pro­
posed17'18 for the conversion of (TPP)Fe" into (TPP)Fe111-
0-Feni(TPP). 

Since the solution spectrum is very similar to those of typical 
manganese(III) phthalocyanine mononuclear species,3 and 
the infrared spectrum establishes the superoxide ion,1 U 9 the 
most probable formulation of this adduct 4 would be 
PeMnm(C>2-), with a moderately ionic bond. Such a species 
would be similar to Zn(TPP)(O?-) except that coupling be­
tween the metal and oxygen electrons is anticipated.20 2i The 
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temperature dependence of the magnetic moment is consistent 
with partial spin coupling between metal and superoxide, but 
may also be complicated by intermolecular interactions. Un­
fortunately solubility restrictions preclude a solution mea­
surement of the magnetic moment. 

This adduct differs from the analogue with tetraphenyl-
porphyrin, (02)Mn |V(TPP), regarded as a peroxo species of 
Mnlv presumably with side-bound oxygen.24 The phthalocy­
anine system, which is thermally very much more stable than 
the TPP system, presumably contains end-on bound oxygen. 
The ability of manganese to bind both reduced forms of oxygen 
so readily may provide a clue to the mechanism of action of 
manganese dismutases.7 
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